یادگیری فعال
معنی کلمه یادگیری فعال در دانشنامه عمومی
یادگیری فعال (یادگیری ماشین). یادگیری فعال یک مورد خاص از یادگیری ماشین است که در آن یک الگوریتم یادگیری می تواند به طور تعاملی از کاربر ( یا منبع اطلاعاتی دیگر ) سؤال کند تا نقاط داده های جدید را با خروجی های مورد نظر علامت گذاری کند. در ادبیات آماری، بعضی اوقات به آن طراحی آزمایشی مطلوب هم می گویند. همچنین منبع اطلاعات، معلم یا دانشمند نامیده می شود.
موقعیت های وجود دارد که داده های برچسب گذاری نشده فراوان هستند اما برچسب گذاری به صورت دستی گران است. در همچین مواقعی، الگوریتم یادگیری می تواند به طور فعال از کاربر یا معلم برای برچسب ها سؤال کند. این نوع از یادگیری تحت نظارت را یادگیری فعال می نامند. از آنجایی که یادگیرنده مثال ها را انتخاب می کند، تعداد مثال ها برای یادگیری یک مفهوم گاهی می تواند بسیار کمتر از تعداد مورد نیاز در حالت معمولی یادگیری تحت نظارت باشد. با این رویکرد، این خطر وجود دارد که الگوریتم توسط مثال های غیر اطلاعاتی آسیب ببیند. پیشرفت های اخیر به یادگیری فعال چند برچسبی، یادگیری فعال ترکیبی و یادگیری فعال در زمینه تک گذری ( آنلاین ) ، ترکیب کردن مفاهیم زمینه ماشین یادگیری ( مانند تضاد و بی خبری ) با سیاست های یادگیری تطبیقی و افزایشی در زمینه یادگیری ماشین آنلاین اختصاص داده شده.
فرض کنید کهT مجموعه از داده های مورد بررسی باشد. برای مثال، در یک مشکل مهندسی پروتئین، T شامل همه پروتئین هایی می شود که برای یک فعالیت خاص و جالب شناخته می شوند و همچنین همه پروتئین های اضافه ای که ممکن است بخوایم زمانی برای ان فعالیت آزمایش کنیم.
در هر بار تکرار، i , T به سه زیر مجموعه شکسته و تقسیم می شود
• T K , i {\displaystyle \mathbf {T} _{K, i}} : نقاط داده ای که برچسب مشخص است.
• T U , i {\displaystyle \mathbf {T} _{U, i}} : نقاط داده ای که برچسب نامشخص است.
• T C , i {\displaystyle \mathbf {T} _{C, i}} : زیر مجموعه ای از TU, i که برای برچسب گذاری انتخاب شده است.
اکثر تحقیقات کنونی در زمینه یادگیری فعال شامل بهترین روش برای انتخاب نقطه داده برای TC, i است.
• ترکیب پرس و جو عضویت: اینجا جایی است که یادگیرنده نمونه های خود را از یک توزیع طبیعی اساسی تولید می کند. به عنوان مثال، اگر مجموعه داده تصاویری از انسان ها و حیوانات باشد، یادگیرنده می تواند یک تصویر بریده شده از یک پا را برای معلم ارسال کند و می تواند سؤال کند که این متعلق به حیوان یا انسان است این مفید است مخصوصاً اگر مجموعه داده کوچک باشد.
• نمونه گیری مبتنی بر استخر: در این روش، نمونه هایی از کل مجموعه داده ها گرفته می شوند و یک نتیجه مطمئن را تعیین می کنند، که این سنجش میزان فهم یادگیرنده از داده ها است. سپس سیستم نمونه هایی را که کمترین اطمینان را دارند انتخاب می کند و از معلم برای برچسب ها سؤال می کند.
• نمونه گیری انتخابی مبتنی بر جریان: در اینجا، هر نقطه داده برچسب گذاری نشده یک بار توسط دستگاه ارزیابی می شود که اطلاعات هر نمونه را در برابر پارامترهای پرس و جو آن بررسی می کند. یادگیرنده برای خودش تصمیم می گیرد که برای هر نقطه داده یک برچسب اختصاص دهد یا از معلم پرس و جو کند.
معنی کلمه یادگیری فعال در ویکی واژه
جملاتی از کاربرد کلمه یادگیری فعال
در جنین ابتدایی موش، چندآدنینه شدن سیتوزولی در آرانایهای مادر سلول تخم، اجازه میدهند سلول زنده مانده و رشد کند حتی اگر رونویسی تا میانههای سطح ۲-سلول (سطح ۴سلول در انسان) آغاز نشده باشد. درمغز، چندآدنینه شدن سیتوزولی در طول یادگیری فعال شده و میتواند نقش مهمی را در تقویت انتقال سیگنال از یک سلول عصبی به سلول دیگر و برای یادگیری و شکلگیری حافظه داشته باشد.